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Abstract. An expression for the noise temperature of an arbitrarily shaped microwave cavity is derived and 
illustrated. The result is applied to a horn/cavity noise source and forms the basis for a set of primary reference 
noise standards that covers the millimetre wave frequency range in thirteen bands from WR-42 to WR-3. 
Power attenuation coefficients for sectoral horns are also presented. 

1. Introduction 

A microwave cavity is defined here as a cavity with 
one output line that supports a single propagating 
mode. The line can be a coaxial or a hollow wave- 
guide transmission line or, as in the case of the milli- 
metre wave noise standards to be discussed, a pyra- 
midal horn. Thermal radiation from the cavity walls 
is conducted by the line to an output connector where 
it appears as an available, broadband (spectral) noise 
power. 

The line itself emits and absorbs radiation due 
to its own dissipative losses, changing the magnitude 
of the noise available at the output connector. This 
change is called excess noise and is a positive or 
negative addition to the cavity wall noise depending 
upon whether the physical temperature of the line is 
greater or less, respectively, than the physical tem- 
perature of the cavity. An accurate estimation of this 
excess noise is central to the design of primary noise 
standards but, unfortunately, accurate estimates are 
increasingly difficult to achieve in the higher milli- 
metre wave frequency bands as line losses increase 
with frequency. 

It was the larger noise temperature errors caused 
by the higher line losses that led to the following 
horn/cavity design and the requisite theory. And, 
while the horn/cavity configuration is not new, the 
rigorous mathematical foundation required of a pri- 
mary reference standard is. The most accurate 
description available to date [l] relies on the plane 
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wave scattering matrix theory of antennas that is 
valid only in the far and radiative near fields, but 
excludes the reactive near field which is unavoidable 
in noise standard design. The present work corrects 
this shortcoming, adds a few new insights to the 
theory of thermal sources, and presents equations for 
the attenuation coefficients of sectoral horns that are 
unavailable in the open literature. 

2. Noise Temperature of an Arbitrarily Shaped 
Microwave Cavity 

The spectral power of a noise source is the power per 
unit bandwidth available at the source's output port. 
This is true whatever the character of the source, 
whether solid state, gas discharge or thermal in 
nature. This power is conveniently described in terms 
of a noise temperature which is defined [2]  as the 
spectral power divided by Boltzmann's constant, 
making the noise temperature of a thermal source of 
uniform physical or thermodynamic temperature 
equal to its thermodynamic temperature (quantum 
effects are discussed in Appendix A). 

The purpose of this section is to derive a funda- 
mental relationship for the noise temperature that is 
independent of the physical geometry of the cavity 
and the emissivity of the cavity walls. The result 
provides the foundation needed in Section 4 to 
describe the output of a horn/cavity type of source. 

A cavity of arbitrary shape is shown in Figure 1 
where T, is the output noise temperature and T is 
the cavity wall temperature which varies with posi- 
tion. The wall temperature is constant (T,) in the 
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Figure 1. Microwave cavity and termination. 

solid angle S1, shown in the figure. A coordinate 
system is erected within the cavity to specify the 
condition and temperature of the walls at any point, 
the elemental areas of which are included in the diffe- 
rential solid angles do. To understand the following 
development, it is important to realize that the solid 
angles are only a book-keeping device that catalogue 
the location of the radiant sources within the wall. 
They are not the solid angles used in antenna theory 
to sum the total radiation entering an antenna aper- 
ture from a particular direction. 

The differential area subtended by dO emits a 
radiant energy that is proportional to the thermody- 
namic temperature T. A portion of this energy pro- 
ceeds directly via the waveguide to the output flange. 
The remaining portion reflects off the interior walls 
numerous times, being slightly reduced in intensity at 
each reflection by the wall losses. The entire contribu- 
tion from dS1 to the output noise power can be ex- 
pressed generally as 

MdT, = TSdS1, (1) 
where S contains the effects of both the direct and 
indirect components of the energy. The function S 
does not contain the temperature explicitly, although 
it does so implicitly due to the fact that the emissivity 
and absorptivity of the wall depend upon the electrical 
resistivity whose magnitude is influenced by the tem- 
perature. The output mismatch factor M [4] in ( l ) ,  
which is not unique to the area in dS2, is required 
because the right side of (1) refers to the net or 
delivered power leaving the output flange while the 
noise temperature corresponds to the available power. 

It should be clear that S is a complicated function 
which contains sums and integrals over the reflection 
components of the energy generated in dO. 

Equation (29) of reference [l] is an examp; of the 
type of series encountered in a simple case where the 
calculations can be approximated by a diffraction 
model [3]. 

Since the radiation from different points on the 
cavity wall is uncorrelated, the total noise 
temperature T, is given by the linear sum of the 
differential contributions 

MT,= TSdS1, (2) s 
where the integral includes the entire internal surface 
area of the cavity. 

Suppose that the termination (whose physical 
temperature is Ti) shown in Figure 1 is now attached 
to the cavity. Suppose also that the cavity has the 
same uniform temperature T,. Then, the noise tem- 
perature of the termination is T,. But, the noise 
temperature T, of the cavity must also be T, or there 
will be an imbalance in energy transfer between cavity 
and termination and one or the other will heat up. 
That this imbalance is never seen in practice is mani- 
fest in the second law of thermodynamics [5 ] .  In other 
words, the second law and (2) imply that 

T, Si dS2 = Mi T,, (3) 

where the subscripts on S and M are used temporarily 
to emphasize that all wall resistivities are to be evalua- 
ted at the temperature Ti. Since the T, on the left side 
of (3) is constant, it can be removed from under the 
integral sign and cancelled with the Ti on the right 
side, leaving 

s 

Si dO= M,.  (4) s 



This result was easily derived by the preceding 
thermodynamic arguments. Deriving it from electro- 
magnetic theory alone, however, is practically impos- 
sible except under very special circumstances. One of 
these special circumstances is presented in the next 
section where the case of cascaded 2-ports is exam- 
ined. 

The special case in the next section suggests that 
the relationship in (4) is more general than thermody- 
namics alone would imply. In particular, thermodyna- 
mics says that (4) is true when the cavity wall is at 
some uniform temperature T,. But this is only an 
apparent restriction that arises from the state of 
thermodynamic equilibrium requiring that the cavity 
wall emissions and absorptions be equal. The impor- 
tant point here is that (4) is true in general no matter 
what the temperature distribution of the cavity wall. 
In other words, (4) can be replaced by 

SdSZ=M. s ( 5 )  

Equation (5) is true in general and says that the 
source's mismatch factor M is equal to the integral 
over the cavity surface. It is interesting to note in 
passing that the surface integral vanishes for the 
pathological case of a lossless cavity since the 
mismatch factor vanishes for the lossless case. 

Suppose now that a part of the cavity is main- 
tained at  a uniform temperature T,. Then, the inte- 
gral in (5) can formally be split into two pieces, one 
over SZ, and one over the remaining part of the cavity 
Ow + ah. This procedure leads to 

S d R = M -  SdSZ. (6) 
j m  S w + h  

Dividing the remaining cavity into 0, and SZh was 
done to serve a later purpose but does not affect the 
present development. 

Inserting (6) into (2) yields 

MTn = MT, + jw + ( T  - T,) S dSZ, (7) 

and dividing by M gives the sought-after noise tem- 
perature 

T,,=T,+ (T-T,)S'dQ, (7') 
l w + h  

where s' S/M is independent of the termination 
reflection coefficient T1 in Figures 1 and 2. The second 
term in these two equations is the excess noise which 
describes an excess above or below what is present if 
the cavity were at a uniform temperature T= T,. 

Although (7') is generally valid, its usefulness 
depends upon a number of things. For example, if 
the wall subtended by SZ, is highly reflective, then 
both terms on the right side are large and the 

resulting S' is a significant part of the whole and must 
be accurately evaluated where T- T, is not small. 
However, T -  T, cannot be small everywhere if T, is 
different from ambient temperature because the 
output flange of the cavity must be maintained at 
room temperature. Therefore, to design an accurate 
standard, the cavity geometry must be arranged so 
that S' is small and accurately calculable where T- T, 
is significant. One design that fulfills these require- 
ments is presented in Section 4. 

3. Cascaded 2-Ports 

This section illustrates the identity in (5) for a situa- 
tion, cascaded microwave 2-ports, where the integrals 
can easily be determined. Figure 2 shows a diagram 
of two 2-ports in cascade terminated by a load. The 
thermodynamic temperatures of the termination and 
the 2-ports are T,, T,, and T,. The mismatch factors 
at the three reference planes are M,,  M ,  and M ,  and 
v , ,  q2 and r]  are 2-port efficiencies which are defined 
as net output to net input powers [4]. 

The noise power leaving the 2-ports and termina- 
tion is [4] 

(8) MTn=M, T m  v + TI (M2 - M1 V I )  ~2 

+ T2 ( M -  M2 v 2 L  

while applying (2) to the configuration in Figure 2 
leads to 

SdSZ+T, SdSZ+T2 SdSZ. (9) 
M T ~ =  Tmlm S, l 2  

[ m S d ~ = M 1 v = M 1 v 1 v 2  

s, SdQ=(M2--M, r ] , ) r ] *  (10) 

Equating coefficients between (8) and (9) yields 

j, S dSZ = M - M ,  r] 

for the surface integrals. 
Summing the right and left sides of the three 

expressions in (10) leads to 

S d O +  SdSZ+ S d O =  SdSZ=M ( 1 1 )  S, S, 1 2  S 
in agreement with (5). 

The relation r]  = q1 q2 used in the first expression 
in (10) comes from microwave circuit theory [6]. 
Thermodynamics obtains it as the special case (4): 
again, summing the expressions in (10) (but using the 
first equality in the first expression this time) and 
inserting into (4) yields 

(1 2) M ,  q + ( M ,  - M ,  r ] , )  v 2  + M -  M ,  v 2  = M ,  
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Figure 2. Cascaded 2-ports. 

or 

4 = ? I t  ?2t (13) 

for the thermodynamic result (the subscripts again 
indicate that the resistivities are evaluated at the 
temperature T,). This is clearly consistent with the 
microwave theory result q = rl  1,. 

A closer look at the second 2-port in Figure 2 
will be useful in the next section. A second efficiency, 
a,, is defined for this 2-port and is called the noise 
efficiency to distinguish it from the q efficiencies. It 
is the ratio of available output to input powers 
through the 2-port. Using microwave circuit 
theory [4], 

where the Sij are scattering coefficients for the second 
2-port and rl and r, are reflection coefficients. 

The expression in (14) holds for any 2-port. If 
the 2-port is a piece of uniform transmission line or 
a smooth line that is gradually expanding or con- 
tracting, then S ,  , = s,, = 0 and the noise efficiency 
becomes 

If rl = O  also, then 

where A is the decibel attenuation through the second 
2-port and accounts for the dissipative line loss. This 
attenuation can be calculated accurately. A process 
similar to the two steps leading from (14) to (16) is 
repeated in the next section where the horn assumes 
a position analogous to the second 2-port. 

4. Noise Temperature for a Horn/Cavity Design 

A set of millimetre wave, primary noise standards has 
been designed [7] using a horn/cavity configuration, 
a simplified machine drawing of which is shown in 
Figure 3. The configuration consists of a load that is 
partly immersed in liquid nitrogen (the cavity shown 
in the figure is on its side: when in use it is set upright 
with the horn at the top), a circular cylinder that 
holds the load, the horn, and a flexible radiation 
shield that keeps ambient radiation out of the cavity 
while allowing the horn to be attached to a system 
without supporting the weight of the entire standard. 

The region of the cavity surrounding and just to 
the right of the load is maintained at the boil-off 
temperature of the nitrogen liquid. Further to the 
right, the cylinder wall rises in temperature until it 
attains ambient or room temperature at the radiation 
shield. That part of the copper horn to the right of 
the shield is maintained at ambient temperature by 
water flowing through the area near the output flange. 
The cross-section of the circular water channel can 
be seen in the figure. 

To find an expression for the noise temperature, 
(7') is expanded by dividing the cavity walls into three 
components: (i) the effective load surface; (ii) the wall 
of the cylinder, the radiation shield and the outer 
surfaces of the horn (including the aperture matching 
section just to the left of the aperture); and (iii) the 
internal surfaces of the horn from the aperture to the 
output flange: 

(T-T,)S'dQ+(T,-T,) 

(17) 

The third integral accounts for loss in the internal 
horn surfaces where the temperature has, for simpli- 
city, been assumed to be constant at T, and the 
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Figure 3. Hornlcavity 

difference ( Th - T,) taken out from under the integral 
sign. 

Error calculations show that the second integral in 
(1 7) accounting for the wall losses is less than 0,05 ?LO 
of the total output noise temperature. Therefore, this 
integral can be dropped with little error, leaving 

for the output noise temperature. 
The horn is designed so that a dominant TE,, 

wave entering the output flange in Figure 3 from the 
right will pass through the throat and flare and 
radiate out from the aperture without appreciable 
internal reflection (measurements show this to be true 
to better than 0,002 in the reflection coefficient). This, 
along with the Lorentz reciprocity theorem [8], 
implies that a modal representation of the fields just 
to the right of the aperture consists of a dominant 
wave that traverses the horn to the output flange 
without reflection and an infinite set of evanescent 
waves that are completely reflected back towards the 
load. The load wedges (the spear-like objects in the 
figure), however, reflect very little of these incident 
evanescent waves which are almost completely ab- 
sorbed. Furthermore, energy behind the horn in the 
region labelled (2) in the figure can only enter the 
aperture by diffracting around the aperture edges. 
This is largely prevented, however, by aperture match- 
ing the horn [9] and results in a decoupling of the 
aperture-flange section of the horn from the region 
( 2 )  of the cavity. The implication of all this is that 
the section of horn from the aperture to the output 
flange looks like a slowly contracting waveguide to 
the dominant field traversing the horn from left to 
right, and that the integral in (18) can be replaced by 

(using a2 = xh in (16) of the previous section) 

S' dR = 1 - rh: s 
where ah is the noise efficiency of the horn. Finally. 
combining (1 8) and (1 9) yields 

T,, = T, + (Th - T,) (1 - uh) (20) 

for the output noise temperature of the horn/cavity. 
The noise efficiency is obtained from 

ah= 1 0 - A i 1 0 ,  (21) 

where A is the decibel attenuation of the horn from 
flange to aperture and where 

A = /:adz. 

The integrand a is the power attenuation coeffi- 
cient whose magnitude is a function of the distance z 
(see Figures 3 and 4) from the horn flange, where I 
is the axial flange-aperture length. This coefficient 
is approximated by using the standard waveguide 
attenuation coefficient since no such expression exists 
for a pyramidal horn. Coefficients for sectoral horns 
(Appendix B) do exist, however, and were used to 
estimate the error due to the waveguide approxima- 
tion. 

The attenuation coefficient a (normally expressed 
in dB/m) is plotted in Figure 4 as a function of 1 
and helps explain one of the crucial aspects of the 
hornlcavity design. The excess horn noise given by 
the second term in (20) can be approximated by 

( 2 3 )  ( Th - T,) (1 - ah) I 0 ,23  ( Th - T,) A 
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Figure 4. Attenuation coefficient. 

since A is small. Thus, the excess noise is proportional 
to the horn attenuation: so also is the noise tempera- 
ture error that results from the loss. Equation (22) 
shows that this attenuation is equal to the area under 
the attenuation coefficient curve in Figure 4. There- 
fore, since the flaring of the horn causes the magni- 
tude of the coefficient to decrease rapidly away from 
the throat, the total attenuation, the excess noise and 
the error are greatly reduced over what they would 
be if the horn were replaced by a straight waveguide. 
This characteristic is important in millimetre wave 
noise standards where the guide loss significantly 
increases from band to band as the frequency 
increases. 

5. Results and Conclusions 

The most important results from the above are (7) 
and (7’). They are valid for any microwave cavity 
whatever the geometry of the cavity as long as a 
portion of the cavity wall has a constant tem- 
perature T,. 

The value of (7) and (7‘) stems from their gener- 
ality and the isolation of the dominant noise 
contributor T,  from the, usually, much smaller excess 
noise represented by the integral terms. 

As pointed out above and in Appendix A, the 
corrections necessary to make the foregoing analysis 

rigorous in the quantum sense involve multiplying the 
thermodynamic temperatures by a simple “quantum 
correction” q. Performing this operation on (7‘) leads 
to 

where qm and q are given by (A. 4) and (A. 2) with 
the appropriate temperatures (T, and r )  inserted 
into (A.2).  Expanding the parenthesis in the second 
term shows, however, that q T - q ,  T ,  and T -  T, 
differ only by a very small, second-order contribution. 
Thus, for practical purposes, (24) can be replaced 
by 

with little error. 

The horn/cavity standards designed around (25) 
have errors (expressed as a percentage of Tn) ranging 
from 0,32 YO for the WR-42 band to 1,31 % for the 
WR-3 band [7]. In contrast, cryogenic standards built 
around a straight waveguide would have errors 
ranging from 1,58 % in WR-42 to 4,99 % in WR-3, 
almost a factor of 4 degradation over the horn/cavity 
standards. 

Appendix A. Quantum Effects 

The quantum effects of thermal radiation have been 
known since the early twentieth century [lo]. Their 
effects are discussed here for completeness. 

The brightness (W.Hz-1.m-2-sr-1) of a 
constant temperature surface is given by 

2 h f 3  
c2 (exp x- 1)’ 

B =  

where it is convenient to define 

hf 
X E - ,  

kT 

The quantities h, f, c, k and T are, respectively, 
Planck’s constant, the frequency, the speed of light 
in a vacuum, Boltmann’s constant, and the thermo- 
dynamic temperature. It is also convenient for noise 
work to write (A. 1) in the form 



where 

X q -  
exp x- 1 

and where 3, is the wavelength corresponding to the 
operating frequency f. 

Equation (A.3) with q equal to unity is the 
classical result, suggesting that the quantum counter- 
parts to the classical results obtained earlier in the 
paper can be obtained by multiplying the thermody- 
namic temperatures in the classical equations by q, 
noting that the required q s are temperature- 
dependent because of the T in the denominator of 
(A .  2 ) .  This is indeed true. 

Appendix B. Power Attenuation Coefficients 

The sectoral horn attenuation coefficients needed to 
evaluate the pyramidal horn mode error are not avail- 
able in the open literature (although their modal fields 
are [ I  11) so they are presented in this appendix. 

The attenuation coefficients can be evaluated 
from the modal fields and the expression [12] 

1 d P  a=4,34- -. 
2 P d: 

where the “4,34” comes from 10/ln 10, P is the power 
travelling through the horn and dP/dz is the corres- 
ponding loss per unit length. The propagating power 
and the power loss are calculated from 

P=!ReI[ExH*.dS, 2 (B. 2 )  

where E and H are the dominant mode fields, and 

d P  - = - R s [ \  1 H,I2dz 
d r  2 

The metallic surface impedance is denoted by R, 
and H, is the dominant mode magnetic field next 
to the surface and parallel to the transverse dimen- 
sion z. 

Rectangular waveguide 

The straight waveguide result is quoted here for com- 
pleteness and for comparison with the equations to 
follow even though the expression can be found in 
numerous places. The attenuation coefficient is 

a w = i ( T + e ) ,  R k2 2 k2  
W P B P  

where w,  p, k,  k,, a and b are the radian frequency, 
magnetic permeability, wavenumber, cutoff wave- 
number ( k ,  = x/a), and the broad and narrow guide 
dimensions. The imaginary part of the propagation 
constant is 

H-plane sectoral horn 

The dominant mode fields for the H-plane horn 
can be obtained from [ l l ]  and, after insertion into 
(B. 1) - (B. 3) (see Figure Bl), 

p ; J ( k r ) l 2  $2- ~ 

W P g  ’1’ (2:Oj 4OH/napg ’ 

where H‘;’ is the Hankel function corresponding to 
exp ( + j  ut) with fractional order p ;  0, is the half 
flare angle for the horn; and H’i)’ is the Hankel 
function derivative with respect to its argument. 

E - Plane horn 

0 s 

d a 
Q‘ 
W m 

Figure B1. Sectoral horns. 477 



E-plane sectoral horn 

The E-plane attenuation coefficient can be obtained 
like the H-plane coefficient and results in 

where eE is the half flare angle for the E-plane horn. 
Both (B. 6)  and (B. 7) reduce to (B. 4) as 8, and 

8, approach zero. 
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